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Abstract
Stationary periodic solutions of the two-dimensional Gross–Pitaevskii equation
are obtained and analysed for different parameter values in the context of the
problem of a supersonic flow of a Bose–Einstein condensate past an obstacle.
The asymptotic connections with the corresponding periodic solutions of the
Korteweg–de Vries and nonlinear Schrödinger equations are studied and typical
spatial wave distributions are discussed.

PACS number: 03.75.Kk

1. Introduction

The Gross–Pitaevskii (GP) equation plays a prominent role in the description of nonlinear
dynamics of Bose–Einstein condensates (BEC) (see, e.g., [1]). It describes, in the so-
called mean-field approximation, the behaviour of the order parameter ψ(r) (the ‘condensate
wavefunction’) and has the form

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + V (r)ψ + g|ψ |2ψ, (1)

where V (r) denotes the potential of the external forces acting on the condensate (e.g.
the confining trap potential), g is an effective coupling constant arising due to inter-
atomic collisions with the s-wave scattering length as (positive for repulsive interactions),
g = 4πh̄2as/m,m being the atomic mass. The GP equation (1) takes into account the
dispersive and nonlinear properties of the condensate which can give rise to various nonlinear
structures in a BEC flow. In particular, vortices, bright (for g < 0) and dark (for g > 0)
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solitons have been extensively studied theoretically in the framework of the GP equation and
observed in experiments (see, e.g., [1] and references therein).

An important insight into the structure of the solutions of the GP equation is provided
by the fact that its potential-free, one-dimensional reduction coincides with the integrable
nonlinear Schrödinger equation

iψτ + ψXX − 2σ |ψ |2ψ = 0. (2)

Here X = x/ξ, τ = tcs/ξ and σ = sgn g, where ξ = h̄/
√

2mn0g is the healing length and
cs = h̄/

√
2mξ is the sound velocity in a BEC of density n0.

In recent experiments [2] on free expansion of a non-rotating BEC after its release from
a trap, the new interesting blast wave patterns have been observed. Using the modulation
solutions of the one-dimensional NLS equation (2) (defocusing case), obtained earlier in
[3–6], and numerical simulations in 2D and 3D, these blast waves have been identified in
[7–9] with expanding dispersive shock waves, which represent oscillatory counterparts of
classical evolutionary gas-dynamic shocks.

Yet another type of nonlinear wave patterns has been observed in another series of
experiments on the flow of a non-rotating BEC past macroscopic obstacles also reported
in [2]. In [10] these structures have been associated with spatial dispersive shock waves.
Spatial dispersive shock waves represent dispersive analogues of the well-known viscous
spatial shocks (oblique jumps of compression) occurring in supersonic flows of compressible
fluids past obstacles. In a viscous fluid, the shock can be represented as a narrow region
within which strong dissipation processes take place and the thermodynamic parameters of
the flow undergo sharp change. In contrast, if viscosity is negligibly small compared with
dispersion effects, the shock discontinuity resolves into an expanding in space oscillatory
structure which transforms gradually, as the distance from the obstacle increases, into a ‘fan’
of stationary solitons. The theory of the generation of such spatial dispersive shock waves
has been developed in [11] in quite general terms for supersonic dissipationless flows past
slender body when the flow can be asymptotically described by the Korteweg–de Vries (KdV)
equation and an effective description of dispersive shocks becomes possible via the Whitham
modulation theory [12–14].

In a different approximation, for highly supersonic flow past slender body, for a certain
range of parameters, the GP equation asymptotically reduces to the one-dimensional nonlinear
Schrödinger (NLS) equation (2), albeit for a completely different set of independent variables
[10]. As a result, the problem of stationary dispersive shock waves in this case can be treated
by similar methods of Whitham’s theory. It is essential that in all cited papers, the analytical
advances in the description of the dispersive shock waves have become possible owing to
a complete integrability of the KdV and 1D NLS equations resulting in the possibility of
representing the associated modulation Whitham systems in Riemann diagonal form (see [15]
and references therein), which dramatically simplifies further analysis.

However, in real experiments the obstacles cannot be treated as slender bodies and the
flow is not highly supersonic, so the spatial dispersive shock waves must be considered in the
framework of the full, non-approximated GP equation (1). In such a study, one inevitably
faces the major obstruction to obtaining analytical solutions to an initial or boundary value
problem because the multi-dimensional GP equation, even in the absence of the external
forcing term, is a non-integrable system and powerful spectral methods (inverse scattering
transform, finite-gap integration) are not available for it. However, the Whitham modulation
approach still remains a possibility provided a minimal structure (availability of a certain
number of conservation laws and a travelling periodic wave solution) is present [16].
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In the framework of the Whitham modulation theory, a dispersive shock wave is considered
as a modulated nonlinear periodic wave whose parameters change slowly on a scale about one
wavelength and one period (see [13, 15] for instance). For a certain spatio-temporal domain,
the dispersive shock represents a train of solitons well separated from each other. In the context
of the BEC flow past obstacle a 2D spatial dispersive shock wave is asymptotically (far enough
from the obstacle) represented as a ‘fan’ of spatial dark solitons. When the obstacle is not very
large, only one soliton can be generated. This simplest case has been considered recently in
[17] where exact spatial soliton solution of the GP equation (1) was found for condensate with
a flow and it was shown by a numerical simulation that such ‘oblique’ solitons can be generated
by a supersonic flow past obstacle. To extend this theory to ‘multi-soliton’ dispersive shock
waves represented by a modulated periodic wave, it is necessary, first of all, to find stationary
periodic solutions of the GP equation (1), and this is the main aim of the present paper. We
also note that the periodic solutions of the GP equation could be important in other, than BEC,
areas where the multi-dimensional NLS equation is used to model nonlinear wave propagation.

2. Periodic solution

The family of solutions of equation (1) describing stationary states of a BEC can be sought in
the form

ψ(r, t) =
√

n(r) exp

(
i

h̄

∫ r

u(r′) dr′
)

exp
(
− iµ

h̄
t
)

, (3)

where n(r) is the density of atoms in the BEC, u(r) denotes its velocity field and µ is the
chemical potential. It is convenient to introduce the dimensionless variables

r̃ = r/
√

2ξ, ñ = n/n0, ũ = u/cs. (4)

Substituting equation (3) into (1) and separating real and imaginary parts we obtain a
system of equations for the density n(x, y) and the two components of the velocity field
u = (u(x, y), v(x, y)),

(nu)x + (nv)y = 0

uux + vuy + nx +

(
n2

x + n2
y

8n2
− nxx + nyy

4n

)
x

= 0

uvx + vvy + ny +

(
n2

x + n2
y

8n2
− nxx + nyy

4n

)
y

= 0

(5)

where we have omitted tildes for convenience of notation.
One can see that the (0 + 2) reduction (5) of the GP equation (1) is drastically different

from its (1 + 1) NLS reduction (2) (which can also be represented in a hydrodynamic
form by the change of variables analogous to (3)—see section 4). Putting aside the subtle
integrability aspects (equation (2) is a completely integrable system while there is no indication
of integrability for the system (5)) we note that, first of all, the scalar system corresponding
to the one-dimensional NLS equation (2) consists of two equations (for n and u) while the
spatial (0 + 2) case leads to three equations (5). As a result, the structure of the system (5)
is significantly more complicated. This can already be seen by comparing the dispersionless
limits of (2) and (5). Indeed, the dispersionless limit of one-dimensional NLS equation (2)
coincides with the classical shallow-water equations (or classical gas-dynamic equations with
the adiabatic index γ = 2) which are always hyperbolic. Contrastingly, the dispersionless
limit of (5) coincides with stationary two-dimensional gas-dynamic (γ = 2) equations which
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have a mixed elliptic-hyperbolic structure depending on the absolute value of the flow velocity.
Thus, one can expect a considerable difference in the behaviour of the periodic solutions and
their modulations in these two different reductions of the GP equation.

We look for the solution of the system (5) in the form of a ‘travelling’ wave

n = n(θ), u = u(θ), v = v(θ), (6)

where θ = x − ay, a being the ‘slope’ parameter of the stationary wave (the wave crests lie
on parallel lines with the slope a to y-axis). Under this ansatz, the first equation (5) gives at
once

u − av = A

n
, (7)

where A is the integration constant, and the other two equations reduce to

n2
ξ − 2nnξξ + 2n3 − 2B

1 + a2
n2 +

A2

1 + a2
= 0, (8)

where B is another integration constant and we have introduced new independent variable

ξ = 2θ√
1 + a2

= 2(x − ay)√
1 + a2

. (9)

One can verify by a direct substitution that equation (8) has the first integral

n2
ξ = n3 − 2B

1 + a2
n2 − 2C

1 + a2
n − A2

1 + a2
, (10)

where C is an arbitrary constant. Equation (10) has the well-known solution in terms of elliptic
functions. To write it down, we denote the zeros of the polynomial on the right-hand side of
equation (10) as p1, p2, p3, so that

n2
ξ = (n − p1)(p2 − n)(p3 − n), p1 � p2 � p3, (11)

and suppose that n = p1 at ξ = 0. As a result, we obtain

n = p1 + (p2 − p1)sn2(
√

p3 − p1ξ/2;m), (12)

where sn(θ;m) is the Jacobi elliptic sine and

m = p2 − p1

p3 − p1
(13)

is the modulus. The constants A,B,C are connected with the zeros p1, p2, p3 by the relations

p1 + p2 + p3 = 2B

1 + a2

p1p2 + p1p3 + p2p3 = − 2C

1 + a2

p1p2p3 = A2

1 + a2
.

(14)

It is worth noting that the components (u, v) of the velocity field are not determined
unambiguously by the constants p1, p2, p3 and a. Indeed, if n is known, we have only
one equation (7) for calculation of u and v. Another equation can be added, if we restrict
ourselves to the consideration of potential flows by imposing the condition

uy = vx, (15)

which is consistent with the system (5) (see [17]), and for a single-phase wave (6) yields at
once

au + v = D. (16)



Two-dimensional periodic waves in supersonic flow of a Bose–Einstein condensate 615

Here D is an additional integral of ‘motion’ which owes its existence to the Bernoulli theorem
for the system (5). Equation (16) implies that the same spatial periodic profile of the
density (12) with the slope a can be supported by different potential velocity fields. If
we fix u and v at some point, then the constant D becomes determined, as well as the velocity
components everywhere. Just this situation occurs in the case of the soliton solution [17]
where the velocity components are supposed to be known at |x| → ∞. Indeed, considering
m = 1 in (12) and assuming n = 1, u = M = constant, where M is the Mach number and
v = 0 as |x| → ∞ we arrive at the oblique dark soliton solution obtained in [17],

n = 1 − 1 − q

cosh2
[√

1 − q(x − ay)/(1 + a2)
] , (17)

where q = M2/(1 + a2) and the velocity components are given by

u = M(1 + a2n)

(1 + a2)n
, v = −aM(1 − n)

(1 + a2)n
. (18)

We note that we are not concerned here with the stability of the obtained periodic solutions
which calls for further nonlinear modulation analysis. The stability of the oblique dark
solitons (17) for M > 1 was established in [17] numerically.

It is important now to investigate the behaviour of the obtained periodic solution for the
parameter values corresponding to some physically interesting asymptotic reductions of the
system (5).

3. Small-amplitude nonlinear periodic waves

As was indicated in [17], if we consider a flow of BEC corresponding to small deviations from
a uniform and homogeneous supersonic flow with n = 1, u = M, v = 0 (M > 1), and make
asymptotic expansions

n = 1 + εn1 + ε2n2 + · · ·
u = M + εu2 + ε2n2 + · · ·
v = εv1 + ε2v2 + · · · ,

(19)

where ε � 1 is a small parameter, then substitution of (19) into (5) followed by introduction
of the scaled variables

ζ = ε1/2(x − Vy), τ = ε3/2y, (20)

leads, according to the standard reductive perturbation method, to relations

u1 = −n1

M
, v1 = V

M
n1, V =

√
M2 − 1, (21)

where n1 obeys the KdV equation

n1,τ − 3M2

2
√

M2 − 1
n1n1,ζ +

M4

8
√

M2 − 1
n1,ζ ζ ζ = 0. (22)

Its periodic solution is well known (see, e.g. [15]) so that the density profile can be expressed
after returning to original (x, y)-coordinates as

n = 1 − 1
2M2ε(λ3 − λ1 − λ2) + M2ε(λ3 − λ2)sn2

[√
λ3 − λ1ε

1/2(x − ay),m
]
, (23)

where

a =
√

M2 − 1 − ε(λ1 + λ2 + λ3)M
2

4
√

M2 − 1
, m = λ3 − λ2

λ3 − λ1
, (24)

and λ1 � λ2 � λ3 are the parameters arising in the finite gap integration method of the KdV
equation (see [15]).
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It is instructive to establish a direct asymptotic correspondence between fully nonlinear
periodic solution (12) of the GP equation and its small-amplitude KdV counterpart (23). For
that, we first represent the arbitrary parameters p1, p2, p3 in the form of asymptotic expansions
in the small parameter ε,

pi = 1 + εp
(1)
i + · · · , i = 1, 2, 3, (25)

and then substitute the expansions (19), (21), (25) into the periodic solution (12) to obtain the
same solution (23) but parameterized by p

(1)
i so that comparison with (23) yields

p1 = 1 − 1
2M2ε(λ3 − λ1 − λ2),

p2 = 1 − 1
2M2ε(λ2 − λ1 − λ3),

p3 = 1 − 1
2M2ε(λ1 − λ2 − λ3).

(26)

Then, using analogous asymptotic expansion for a,

a = a(0) + εa(1) + · · · , (27)

relation (7) and the last relation in (14), we recover the asymptotic expression (24) for the
slope. Inverse expressions for λj s in terms of pj s, following from (26) are

λ1 = p1 + p2 − 2

M2ε
, λ2 = p1 + p3 − 2

M2ε
, λ3 = p2 + p3 − 2

M2ε
. (28)

The soliton solution of the KdV equation corresponds to m = 1 in (23). In terms of the
original parameters pj , we have p2 = p3 = 1 (see (13), (26)), which implies by (28) that
λ1 = λ2 ≡ λ and λ3 = 0. Then

p1 = 1 + M2ελ (29)

and, since p1 � p2 � p3 (see (11)), we have p1 � 1 and thus λ � 0. Now, from (23) we have
for m = 1 the small-amplitude dark soliton profile

n = 1 − −M2ελ

cosh2
[√−ελ(x − ay)

] , (30)

and from (24) its slope is

a =
√

M2 − 1 − ελM2

2
√

M2 − 1
. (31)

Since λ � 0, one can see from (31) that a � aM , where aM = √
M2 − 1, i.e. the shallow

(KdV) dark solitons always lie within (and close to) the Mach cone.
If we introduce the inverse half-width κ of the soliton according to

κ = 2
√−ελ, (32)

then (30) assumes a more conventional form

n = 1 − M2κ2

4 cosh2[κ(x − ay)/2]
, (33)

which also follows directly from the oblique dark soliton solution (17) in the small-amplitude
limit [17].

Thus, we have established an asymptotic correspondence between the stationary periodic
two-dimensional solution of the GP equation characterized by four independent parameters
and the familiar three-parameter cnoidal wave solution of the KdV equation.
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4. Periodic stationary waves with large slopes in highly supersonic flow

If the flow is highly supersonic (M � 1), then the system (5) can be reduced to the NLS
equation [10]. Indeed, after introduction of the new variables

u = M + u1 + O(1/M), T = x/2M, Y = y, (34)

where u1 → 0 as |Y | → ∞, we arrive, to leading order in M−1, at the system

1

2
nT + (nv)Y = 0

1

2
vT + vvY + nY +

(
n2

Y

8n2
− nYY

4n

)
Y

= 0
(35)

and the equation
1
2u1T + vu1Y = 0. (36)

The leading term of the highly supersonic expansion of the potentiality condition (15) together
with equation (36) implies u1 ≡ 0. The decoupled from (36) equations (35) represent the
hydrodynamic form of the 1D NLS equation

i�T + �YY − 2|�|2� = 0 (37)

for a complex field variable

� = √
n exp

(
i
∫ Y

v(Y ′, T ) dY ′
)

. (38)

Note that this NLS equation, unlike the exact (1+1) reduction (2) of the GP equation, represents
a (0+2) asymptotic approximation and, in addition, contains a completely different, compared
to (2), set of independent variables. Periodic solution of the NLS equation (37) is well known
(see, e.g., [15]) and for the density n = |�|2 can be written in the form

n = ν1 + (ν2 − ν1)sn2
[√

ν3 − ν1

(
y − s1

2M
x
)

,m
]
, (39)

where

s1 = λ1 + λ2 + λ3 + λ4, m = (λ2 − λ1)(λ4 − λ3)

(λ3 − λ1)(λ4 − λ2)
(40)

and ν1 � ν2 � ν3 are expressed in terms of the parameters λ1 � λ2 � λ3 � λ4 as follows,

ν1 = 1
4 (λ1 − λ2 − λ3 + λ4)

2,

ν2 = 1
4 (λ1 − λ2 + λ3 − λ4)

2,

ν3 = 1
4 (λ1 + λ2 − λ3 − λ4)

2,

(41)

and m = (ν2 − ν1)/(ν3 − ν1).
For M � 1 the stationary wave has a large slope with respect to the y-axis, that is a � 1

and the general solution (12) assumes the form

n = p1 + (p2 − p1)sn2
(√

p3 − p1(y − x/a);m
)
. (42)

Since the asymptotic solution (42) of the GP equation is characterized by four
parameters p1, p2, p3, a, the correspondence with the four-parameter (ν1, ν2, ν3, s1) periodic
solution (39) is readily established by a direct comparison:

p1 = ν1, p2 = ν2, p3 = ν3, a = 2M

s1
. (43)
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The dark soliton reduction of the NLS cnoidal wave solution is obtained by putting
λ2 = λ3, i.e. m = 1, in (39). To get a unit pedestal for the soliton it is convenient to choose

λ1 = −1, λ4 = 1. (44)

Then, denoting λ2 = λ3 ≡ λ we get from (43), (40)

a = M

λ
. (45)

Thus, in the soliton limit we obtain

n = 1 − 1 − λ2

cosh2
[√

1 − λ2(y − x/a)
] (46)

which agrees with the asymptotic representation of a highly supersonic oblique GP soliton in
[17]. Without loss of generality we consider the waves in the upper half-plane (a > 0), then
it follows from (44) that 0 � λ � 1. Thus, a > aM and, therefore, the dark solitons in highly
supersonic flows are always generated within the Mach cone.

If the NLS soliton is shallow, then it must be consistent with the corresponding asymptotic
as M � 1 of the KdV soliton. Indeed, we introduce λ2 = 1 − M2κ2/4, where Mκ � 1, and
obtain the KdV soliton solution (33) but now with a equal to

a = M/
√

1 − M2κ2/4 ∼= M + 1
8M3κ2 (47)

which is the approximation of equation (24) with chosen values of λi and M � 1.
The connection between the soliton parameters λ for the KdV and the ‘shallow’ NLS

limits is given by the expression

λ2
NLS = 1 + M2ελKdV. (48)

Since λKdV � 0, we have λNLS � 1 but 1 − λNLS � 1.

5. Linear waves

At last, let us consider the limit of linear waves propagating on a constant background (this case
is more general than the linear wave limit within the KdV approximation (22) as it does not
imply the long-wave scaling (20)). In this case equation (12) with m � 1 (i.e. p2 − p1 � 1)
can be transformed to

n = 1 − 1

2
(p2 − p1) cos

[
2

√
p3 − p1

1 + a2
(x − ay)

]
, (49)

where we have assumed that the mean background density is equal to unity, (p1 + p2)/2 = 1.
Further, in the limit of vanishing amplitude p2 → p1 and large wavelength we take

p1 = p2 = 1, p3 = 1 + M2ε, (50)

and obtain for M2ε � 1,

a =
√

M2 − 1 − M2ε

2
√

M2 − 1
. (51)

Now we have a < aM , which means that the linear long waves, in contrast to solitons, are
always generated outside the Mach cone. If we denote

2

√
p3 − p1

1 + a2
∼= 2

√
ε = K, −1

2
(p2 − p1) = Q, (52)

then we obtain the stationary linear wave solution in the form
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n = 1 + Q cos

[
K

(
x −

(√
M2 − 1 − M2K2

8
√

M2 − 1

)
y

)]
, (53)

which maps to the tail of the oblique soliton solution in the KdV limit (33) by the change
κ 	→ iK .

As was noted above, the general formula (49) describes linear waves of an arbitrary
wavelength and it can be mapped to the tails of the general soliton solution (17).

6. Conclusions

We have obtained the family of exact fully nonlinear stationary periodic solutions of the
2D Gross–Pitaevskii equation and studied in detail their particular asymptotic reductions
corresponding to the solutions of the KdV and NLS equations.

The obtained solutions provide a basis for further studies connected with the description
of dispersive shock waves observed in recent experiments [2] of the flow of a BEC past
obstacles as well as in numerical simulations [17]. Some straightforward implications about
the characteristic features of the wave patterns arising in the flow of a BEC past obstacle have
been made from the expressions for the slope a in the obtained asymptotic reductions of the
full periodic solution. The deep solitons asymptotically described by the NLS equation have
large slopes, while the shallow solitons obey the KdV equation and have slopes close the Mach
cone, aM = √

M2 − 1, and they are located inside the Mach cone. The linear wave packets
are always located outside the Mach cone. Detailed theories of these waves patterns generated
by the flow of a BEC past obstacles will be developed elsewhere.
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